Additive Schwarz preconditioners for the obstacle problem of clamped Kirchhoff plates

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates

We study a Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates on polygonal domains. Error estimates are derived in the energy norm and the L∞ norm. The performance of the method is illustrated by numerical experiments. © 2013 Elsevier B.V. All rights reserved.

متن کامل

A Quadratic C0 Interior Penalty Method for the Displacement Obstacle Problem of Clamped Kirchhoff Plates

Abstract. We study a quadratic C0 interior penalty method for the displacement obstacle problem of Kirchhoff plates with general Dirichlet boundary conditions on general polygonal domains. Under the conditions that the obstacles are sufficiently smooth and separated from each other and the boundary displacement, we prove that the magnitudes of the errors in the energy norm and the L∞ norm are O...

متن کامل

An A Posteriori Analysis of C0 Interior Penalty Methods for the Obstacle Problem of Clamped Kirchhoff Plates

We develop an a posteriori analysis of C interior penalty methods for the displacement obstacle problem of clamped Kirchhoff plates. We show that a residual based error estimator originally designed for C interior penalty methods for the boundary value problem of clamped Kirchhoff plates can also be used for the obstacle problem. We obtain reliability and efficiency estimates for the error esti...

متن کامل

Finite element methods for the displacement obstacle problem of clamped plates

We study finite element methods for the displacement obstacle problem of clamped Kirchhoff plates. A unified convergence analysis is provided for C1 finite element methods, classical nonconforming finite element methods and C0 interior penalty methods. Under the condition that the obstacles are sufficiently smooth and that they are separated from each other and the zero displacement boundary co...

متن کامل

On additive Schwarz preconditioners for sparse grid discretizations

Based on the framework of subspace splitting and the additive Schwarz scheme, we give bounds for the condition number of multilevel preconditioners for sparse grid discretizations of elliptic model problems. For a BXP-like preconditioner we derive an estimate of the optimal order O(1) and for a HB-like variant we obtain an estimate of the order O(k · 2), where k denotes the number of levels emp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ETNA - Electronic Transactions on Numerical Analysis

سال: 2019

ISSN: 1068-9613,1068-9613

DOI: 10.1553/etna_vol49s274